COMM 616: Modern Optimization with Applications in ML and OR 2024-25 Fall

Lecture 2: Element of Convex Analysis I

Instructor: Jiajin Li September 3rd, 2024

First and foremost, the concept of convexity plays a crucial role in both the theoretical and algorithmic
aspects of optimization.

1 Why Convexity is Special?

(i) They exhibit favorable geometric properties, such as the fact that any local minimum is also a global
minimum.

(ii) There are excellent software tools (e.g., CVX, Mosek, Gurobi) that can efficiently solve a wide range
of convex problems.

(iii) Although many machine learning tasks are still nonconvex, modern nonconvex theories and algorithm
designs continue to heavily rely on fundamental convex analysis techniques.

Theorem 1 (Local Implies Global). Consider an optimization problem

min f(),

where f 1§ — R is a conver function and S is a convex set. Then, any local minima is also a global minima.

Proof. Let T be a local minima. By its definition (see Definition 5 in Lecture 1), we have: There exists € > 0
such that f(&) < f(x), for all z € B(&,€). Suppose for the sake of contradiction, there exists a point z € S
with

f(z) < f(@).

Moreover, due the convexity of the set S, we have
a4+ (1—a)z € §,Va € [0,1].
By the convexity of f, we have

flaz +(1-a)z) <af(®)+ (1 -a)f(z)
<af(®)+(1-a)f(@) = f(@) (1)

However, as @ — 1, we have a& + (1 — @)z — & and the inequality (1) contradicts the fact that & is a local
minima. u
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2 Convex Sets

Definition 2. Let S C RY. We say that S is convex if ax + (1 —a)y € S whenever z,y € S and o € [0, 1].

Proposition 3. Let S C R? be non-empty. Then, the following are equivalent:
(i) S is convex.

(i) Any convex combination of points in S belongs to S.



Observation 4. A set S is convex if for any x and y in S, the x — y line entirely in the set S.

Example 5 (Some Examples of Convex Sets). (i) Non-Negative Orthant: R% = {x € RY : & > 0}.

(ii) Hyperplane: H(s,c) = {x € R*: sTx = c}.

(iii) Halfspaces: H=(s,c) = {x € RY: sTx < ¢} ,HV(s,¢c) = {w e R?: sTw > c}.

(iv) Euclidean Ball: B(&,r) = {x € R?: [ — &|s < r}.

Proof Idea By Definition 2 and apply the triangle inequality. ]

(v) Ellipsoid: £(%,Q) = {x e R?: (z —2)TQ(xz — z) < 1}, where Q is an d x d symmetric, positive

definite matriz (i.e., €7 Qx > 0 for all x € R\{0} and denoted by Q € S¢_ ).

Proof Idea  proving that |x||q = V&7 Qx is a norm and repeat above. |
(vi) Simplex: A = {Z?:o ;T Z?:o a;=1,a; >0 for i=0,1,...,n}, where xg,x1,...,x4 are vectors
in R? such that the vectors x1 — xq, Ta — To, . .., Tq — o are linearly independent.

(vii) Conver Cone: A set K C R is called a cone if {ax : a > 0} C K whenever x € K. If K is also convex,

then K is called a convex cone.

(viii) Positive Semidefinite Cone: S¢ = {Q €St xTQx >0 for all x € Rd}.

2.1

Convexity-preserving Operations

Establishing the convexity of a set directly from its definition can sometimes be challenging. Here, we will
study certain operations such that if S is convex, then applying an operator A ensures that A(S) is also
convex.

(i)

Intersection of two convex sets if convex. That is, if S; and Ss are convex, then §; NSy is also convex.

Remark 6. This is also true for infinite/finite intersections or Minkowski sums. However, the union
of two convez sets is not necessarily conver.

Convexity is preserved under affine mappings.

Definition 7 (Affine Functions). We say that a map A : R™ — R™ is affine if
Alaz; + (1 —a)xs) = aA(xr) + (1 — o)A (x2)

for all £1,x5 € R and o € R. It can be shown that A is affine iff there exist Ay € R™*? and yo € R™
such that A(x) = Aoz + yo for all x € RY.

Proposition 8. Let A :R? — R™ be an affine mapping and S C R? be a convex set. Then, the image
A(S) = {A(z) e R : @ € S} is conver. Conversely, if T CR™ is a convez set, then the inverse image
AN T)={x eR?: A(x) € T} is convex.

Let us use Proposition 8 to revisit the convexity of Ellipsoid.

Proof. Consider the ball 5(0,r) = {w eR?: T < r2} C R?, where r > 0. Clearly, B(0,7) is convex.

Now, let Q be a d x d symmetric positive definite matrix. Then, it is well-known that Q is invertible
and the d x d symmetric matrix Q! is also positive definite. Moreover, there exists a d x d symmetric



matrix Q12 such that Q' = Q~/2Q /2. Thus, we may define an affine mapping A4 : R* — R by
A(x) = Q'/?x + z. We claim that

A(B(O,r)) ={zx € RY: (x —2)TQ(x — ) < r’} =&z, Q/r?).

Indeed, let € B(0,r) and consider the point A(x). We compute
(A(z) —2)TQ(A(z) — 2) = 27 Q?2QQ 2z = 2Ta < r?

ie., A(B(0,r)) C &(&,Q/r?). Conversely, let ¢ € & (E,Q/r2). Consider the point y = Q/?(z—
Z) = A7!(x). Then, we have yTy < r2, which implies that &£(z,Q/r?) C A(B(0,r)). Hence, we
conclude from the above calculation and Proposition 8 that £(&, Q/r?) is convex. |

(iii) Convexity is preserved by perspective functions. Define the perspective function P : R? x Ry, — R
by P(x,t) = Z.

t

Proposition 9. Let P : R? x R, — RY be the perspective function and S C R x Ry be a convex
set. Then, the image P(S) = {x/t € R : (z,t) € S} is convex. Conversely, if T C R? is a conver set,
then the inverse image P~*(T) = {(®,t) e R* x R4 : @/t € T} is convex.

2.2 Projection onto Closed Convex Sets

The projection operator plays a crucial role in optimization algorithms. Specifically, the efficiency of these
algorithms depends in part on the efficient computation of the projection operator.

Theorem 10. Let S C R? be non-empty, closed and convex. Then, for every & € R?, there exists a unique
z* € S that is closest (in the Euclidean norm) to x.

Proof Idea A useful characterization of projection:
projs(a) = argmin, s [z — z|13.

We apply the Weierstrass theorem (which states that a continuous function over a compact set attains its
minimum and maximum) to prove existence. Moreover, we use the method of contradiction to prove unique-
ness. |

Theorem 11. Let S C RY be non-empty, closed and conver. Given any x € R?, we have z* = projg(x) if
and only z* € S and
(z—2T(x—2) <0, VzeS.

Proof. Let z* = projg(x) and z € S. Consider points of the form z(a) = az + (1 — «)z*, where o € [0, 1].
By convexity of the set S, we have z(«) € S. Moreover, we have

12" =z, < [lz(e) — 2|2
for all @ € [0,1]. On the other hand, note that
lz(a) — 2|3 = (=" +a(z = 2") —@)" (" +a(z - 2z") —x)
= 2" =l + 20 (2= 21" (2" —2) + 0?2 - 2]

Thus, we see that ||z(a) — z||3 > ||z* — w||§ for all a € [0,1] if and only if (z — z*)" (2* — ) > 0. This is
precisely the stated condition.



Conversely, suppose that for some 2z’ € S, we have (z — z’)T (x—2') <0 for all z € S. Upon setting

z = projg(x), we have
(projs (@) — #')" (x — ') 0. 2)
On the other hand, by our argument in the preceding paragraph, the point projg(x) satisfies
. T .

(2" — projs(z))” (@ —projs(x)) < 0. (3)

Upon adding (2) and (3), we obtain
. T . . 2
(projs(z) —2')" (projs(x) — 2) = [|projs(z) — 2’|, <0

which is possible only when z’ = projg (). |
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