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1 Convex Functions

Definition 1. Let f : R? — R be an extended real-valued function that is not identically +oo. We say that
f is convex if

flazi + (1 — a)xz) < af(z1) + (1 — a) f(z2),
for all 1, x5 € RY and o € [0,1].

Proposition 2 (Connection Between Convex Sets and Convex Functions). Let f : RY — R be an ertended
real-valued function that is not identically +0o. Then, f is convex if and only if epi(f) is convex.

Proposition 3 (Jensen’s Inequality). Let f : RY — R be as defined above. Then, f is convex if and only if

k k
f (Z%‘%‘) <> aif(m),
i=1 i=1

for any 1, o, ...,z € RY and oy, ..., ap € [0,1] such that Zle a; = 1.
Proof.
<: By definition.

k k k
=: f is convex = epi(f) is convex: Zai(:ci,f(wi)) = (Z aimi,Zaif(mi)> € epi(f).
i=1 i=1 i=1

Theorem 4 (Geometric Characterization of Convex Functions). Let f : RY — R be a convex function

such that epi(f) is closed. Then, f can be represented as the pointwise supremum of all affine functions
h:R* = R satisfying h < f.

Observation 5 (Geometric Characterization of Convex Functions and their Conjugate Functions). We
consider a set:
F={(y,c) € RIxR:yTex—c< f(z),Vx € ]Rd}.

which consists of the coefficients of affine functions h : R* — R satisfying h < f. Clearly, we have:

yTz—c< f(@) forallzeR! < sup (yTe— f(@) <c
zeR

This shows that F is the epigraph of the function f* : R¢ — R, given by:

f*(y) = sup (y'z— f(x)),

zeR?

which is the conjugate function. Since F is closed and convex, f* is convex.



2 Convexity-Preserving Transformations

As in the case of convex sets, it’s sometimes difficult to check directly from the definition whether a given
function is convex or not.

Theorem 6. The following hold:

(i) (Non-negative Combination): Let f1,..., fn : R? = R be convez functions satisfying N2, dom(f;) #
0. Then, for any a1, s, ..., 0, > 0, the function f: R® — R defined by

flx) = Zaifi(m

1S conver.

(ii) (Pointwise Supremum): Let T be an index set for {fi}icz for all i € Z. Define the pointwise
supremum f; : R — R of {fi}iez by
f(z) = sup fi(z)
i€Z
(note: T may not be a finite set). Suppose that dom(f) # 0. Then, the function f is convez.
Proof Idea  The epigraph of f is the intersection of the epigraphs of f;. The intersection of (possibly
infinite) convex sets remains convez. |

(iii) (Affine Transformation): Let g: R — R be a convex function, and let A: R™ — R? be an affine
mapping. Suppose that range(A) Ndom(g) # 0. Then, f: R™ — R defined by

f(@) = 9(A())

(iv) (Composition with an Increasing Convex Function): Let g : R? — R and h : R — R be
conver functions but not identically +oco. Suppose that h is increasing on dom(h). Define the function
f:RY = R by f(x) = h(g(x)) with the convention h(+oc0) = +oo. Suppose that dom(f) # 0. Then f

18 conver.
Example 7 (Counter-example). Consider
h(z) ==z whenz >0
and g(x) = 2.

Then, we have
f(@) = h(g(x)) = =V/]z]> = —|z|,

which is nonconver.

(v) (Restriction on Lines): Given a function f: R? — R that is not identically +oo, a point xy € R,
and a direction h € R", define the function fz,n: R — R by

fzo,h = f(mO + th)

Then, the function f is convex if and only if the function fwo,h is convex for all ¢y € R? and t € R.



Remark 8. The convexity of a high-dimensional function can always be verified by examining a col-
lection of one-dimensional functions.

Proof. Let xg, h be arbitrary. Then, for any t1,¢; € R and « € [0, 1], we have
faon(ats + (1 = )ty) = f(zo + (at; + (1 — a)tz)h)
< af(xo+t1h) + (1 — ) f(zo + t2h)
= afwo,h(tl) + (1 - a)fwmh(tQ)a

where the first inequality follows from the convexity of f.

Conversely, let ¢1, o € R? and « € [0,1]. Upon setting ¢y = ; and h = x5 — x1, we have
F((1 = @)@y + ams) = faon(a)
= fwo,h(a 1+ (1-a«)-0)
< fag,n(1) + (1= @) fap, 1 (0)
= af(@2) + (1 —a)f(z),

where the first inequality follows from the convexity of fmo’h.

3 Differentiable Convex Functions

When a given function is differentiable, it’s possible to characterize its convexity via their derivatives.

Theorem 9. Let f : Q — R be a differentiable function on the open set @ C R and S C R? be a convex
set. Then, f is convex on S if and only if

fx) > f(&) + V(@) (x-2)

forallx,z € S.

When f is twice-differentiable, then we have

Theorem 10. Let f : S — R be a twice differentiable function on the open convex set S C R?. Then f
is convez if and only if V2f(x) = 0 for allz € S.

Example 11 (Counter-example). Consider a function f : R? — R given by f(z,y) = v®—y%. This function
is convex on the set S = R x {0}. However, its Hessian is not postive semi-definite for any x,y € R, i.e.,

vran=[o 5

4 Establishing Convexity of Functions

(i) Consider f:R? x 8¢, - R, f(z,Y)=27Y .

Proof. By Proposition 2, we check the convexity of its epigraph, i.e.,
epi(f) ={(z, Y,t) e R xS, xR:Y = 0,27 Y 'z < ¢},

{($7Y7t)EIRdXSi+XR:Y>-O, L}T :ﬂ EO}.

where the last equality follows from the Schur complement. ]



(i)

(i)

Let f: R™" = Ry, f(X) = [|X||2, where || - ||2 is the spectral norm.
It is well known that (see, e.g., [1])

IX|l2 = sup v Xu.

lvll2=1,||lu[l2=1

By Theorem 6 (ii), we finished the proof.
Let f:R? — R be given by f(x) = log (Z 1 exp(xl))

Proof. By Theorem 10, we compute the Hessian of f:

exp(x;) exp(z;) exp(z;)

82f($) Z%:l exp(zk) (Ez=1 exp(gyk))z e s

Or, 0z, )| —_oxpl@)exp(z;) o
’ (22, exp(an)? if i

This gives the compact form as

Vif(x) = ﬁ (diag(z) — z2"),

where z = (exp(z1), exp(z2), ..., exp(zq)). Next, we are trying to check the Hessian V2 f(x) is positive
semi-definite for any € R%. That is, for any v € R, we have

1 [/ a d d 2
vTV2f(w)v = W (Zl zi> (Zl zw?) — <Zl zivi>

() () ()

i=1

>0,

where the last inequality follows from the Cauchy-Schwarz inequality. ]

Let f:R? x Ry — R be given by f(x,t) = tlog (Zl 1exp( )) .
Sketch of Proof By Proposition 2, we check the convexity of its epigraph, i.e.,

d
epi(f) = {(xvtvr) € ]Rd X ]R-‘r+ xR: 10g (ZQXP <-7;z)> < :}
=1

By the properties of the perspective function, we only have to check the set

d
{(w,r) eR?x R :log <Z exp(xz-)) < r} .

i=1



(v) Let f: 8%, — R be given by f(X) = —Indet X. For those readers who are well versed in matrix
calculus (see, e.g., [3] for a comprehensive treatment), the following formulas should be familiar:

ViIX)=X"!, Vf(X)=X"'eXx !

Here, ® denotes the Kronecker product. Since X! > 0, it can be shown that X! @ X! - 0.

Proof. Let Xg € SiJr and H € S%. Define the set

D={tcR:Xg+tH>0} ={t € R: Apin(Xo + tH) > 0}.

Since Apin(+) is continuous (see, e.g., [2, Chapter IV, Theorem 4.11], we see that D is open and convex.
Now, we consider fx,m:D — R given by

fxom(t) = f(Xo + tH).
For any ¢t € D, we compute
fo,H(t) = —Indet(Xp + tH)
— _Indet (Xg (I + txg%Hx(;%) X&)
d
== (Z In(1 +tA;) + 1ndetX0> ,
i=1

_1 _1
where Aq, ..., \q are the eigenvalues of X, *HX,, °.

Then, by Theorem 6 (v), we only have to prove the convexity of fXOH() Since the domain D is open
and convex, we can apply Theorem 10 and check its second derivative:
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This lecture draws extensively from the material available at ENGG 5501 Handout 2 taught by Prof. Anthony
Man-Cho So.


https://www1.se.cuhk.edu.hk/~manchoso/2425/engg5501/2-cvxanal.pdf
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