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Main Results

1. Spurious stationary points inevitably exist when non-gradient
Lipschitz kernels are used for Bregman proximal-type algorithms. J

2. (Algorithm-Dependent Hardness Results) Bregman proximal-type
algorithms are unable to escape from a spurious stationary point in
finite steps when the initial point is bad.




What we'll cover today?

1. Introduction and Problem Settings
2. Spurious Stationary Points and Examples
3. Algorithm-Dependent Hardness Results and their Implications

4. Unsatisfactory Stationary Measures and Convergence Behaviour Investigation
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Mirror Descent (Non-Euclidean Gradient Descent)

min F(x) (P)

e Gradient Descent:
Xy =x—t-VF(x)
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e Mirror Descent:
1
x; =argminVF(x)T(y — x) + — Dn(y, x)
———
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Bregman Divergence

Better to exploit the geometry of the problem at hand!



Bregman Divergence

Definition
The Bregman divergence between two points x, y associated with a kernel function h: Q — R

is defined as
Dy(x,y) := h(x) — h(y) = Vh(y)" (x - y),
where h is continuously differentiable and strictly convex on the convex set Q.

o (V) If h(x) = 3|[x|[?, we have Dy(y, x) = 3|ly — x|[>. Then, mirror descent reduces to the

vanilla gradient descent.
o (X) If h(x) =>"7_, xilog x;, Dp(y, x) is just KL divergence.

e (X) Other non-gradient Lipschitz kernel functions - - -



Optimization Problems

Xn;]ilgn F(x) := f(x) + g(x). (P)

e dom(g) = X is a nonempty closed convex set.
e f: X — R is continuous differentiable on X' (possibly nonconvex).

e g: X — R is convex and locally Lipschitz continuous, e.g.,

e Indicator function -> include the constrained optimization problem as a special case.



Bregman Proximal-Type Algorithms

. 1

xy = Ti(x):=argmin{  (y;x) +&(y)+ 7Du(y,x) (A)
yeRn ~—— t

Surrogate Model

o If y(y; x) = f(y), (A) reduces to Bregman proximal point methods [Chen and Teboulle, 1993].

o If v(y; x) = f(x) + VFf(x)"(y — x), (A) reduces to Bregman proximal (projected) gradient
descent [Bauschke et al., 2017],[Bauschke et al., 2019].

o If y(yix) = f(x)+ VF(x)"(y — x) + 2(y — x)TV?f(x)(y — x), (A) has been recently
explored by [Doikov and Nesterov, 2023].



Separable Kernel Functions

o h(x)=>"",¢(x), where p : R — R is a univariate function.

e ¢ is continuously differentiable on int(dom(¢y)), and |/ (x*)| — +oo as
xk — x € bd(dom()).

e o is strictly convex.




Separable Kernel Functions

o h(x)=>"",¢(x), where p : R — R is a univariate function.

e ¢ is continuously differentiable on int(dom(¢y)), and |/ (x*)| — +oo as
xk — x € bd(dom()).

e o is strictly convex.

. Boltzmann-Shannon entropy kernel h(x) = >""_; x; log(x;);
. Fermi-Dirac entropy kernel h(x) = "7, x; log(x;) + (1 — x;) log(1 — x;);
. Burg entropy kernel h(x) = "7, — log(x:);

. Fractional power kernel h(x) =>>7_; pxi — 5 (0 < p <1);

. Hellinger entropy kernel h(x) = >7 |, —/1 — x?.
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Spurious Stationarity

Definition

A point x € X is defined as a spurious stationary point of problem (P) if there exists a vector
p € OF(x) satisfying p7(,) = 0 but 0 ¢ 9F(x).
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Spurious Stationarity

Definition

A point x € X is defined as a spurious stationary point of problem (P) if there exists a vector
p € OF(x) satisfying p7(,) = 0 but 0 ¢ 9F(x).

e Z(x) :={i €[n] : x; € int(dom(y))}.
e Spurious stationary points exist only when the kernel is non-gradient Lipschitz.

e For a kernel h with gradient Lipschitz property, we have dom(y) = R and Z(x) = [n] hold
for all x € X, thereby precluding the existence of spurious stationary points.

Only depends on the problem itself and the kernel function!
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Convex Example

Example (A Simple Linear Programming Problem)

Suppose that cl(dom(h)) = R2 and consider the following simple problem:
min  —xy
X1,X2

st. x1+x=1,x1,x >0.

The point (0,1) is identified as a spurious stationary point.
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Convex Example

Example (A Simple Linear Programming Problem)

Suppose that cl(dom(h)) = R2 and consider the following simple problem:
min  —xy
X1,X2

st. x1+x=1,x1,x >0.

The point (0,1) is identified as a spurious stationary point.

We find that 0 ¢ 9F((0,1)) and p = (—1,0) € 9F((0,1)) with pz(o1)) = P2 =0, i.e,
8F((oa 1)) = {(_170) + )‘(_17 0) + M(lv 1) HP S R+a ne R}
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Nonconvex Example

Suppose that cl(dom(h)) = R?2 and consider the following simple problem:
min - —x2 +x
X1,X2

S.t. X1 +X2:17X1,X2 20

The point (0,1) is identified as a spurious stationary point.




Nonconvex Example

Suppose that cl(dom(h)) = R?2 and consider the following simple problem:

min - —xZ + xo
X1,X2

s.t. X1+X2:17X1,X2 20

The point (0,1) is identified as a spurious stationary point.

Proposition (Existence of Spurious Stationary Points)

Consider a convex optimization problem

min  f(x)
xeXx
s.t. Ax=b,x > 0.
Suppose the constraint set is compact and and f is non-constant. If cl(dom(h)) =R, then

every maximal point X* € argmax, .y f(x) is a spurious stationary point.

12
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Algorithm-dependent Hardness Result

If there exists a spurious stationary point X* € X for problem (P), then for every K € N and

€ > 0, there exists an initial point x° € B.(x*) N X, sufficiently close to the spurious
stationary point X", such that

x¥ € B(x*) for all k € [K].
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Algorithm-dependent Hardness Result

If there exists a spurious stationary point X* € X for problem (P), then for every K € N and
€ > 0, there exists an initial point x° € B.(x*) N X, sufficiently close to the spurious
stationary point X", such that

x¥ € B(x*) for all k € [K].

[Corollary 1, Bauschke et al., 2017]. When f is convex, the sequence {x*},cn generated by
BPG satisfies

Extremely Large

Dp(%,x%) 1
F(x¥)—min F<—22 7 2
( ) xeX - t k’
where X € argmin, y f is the global minimizer, t is the step size, and x° is an arbitrary initial

point.
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Visualization

Example (The Simple Linear Programming Problem)

For every K and € > 0, we construct the initial point as
0 V2e V2e _y
X Te ,1— Te

Trajectory Trajectory (Log Scale)
0.03 10° -
negative entropy x log(z)
0.025 az. O'Di polynomial kernel z~!
0.02 10720
%5 0.015 Yy
0.01 10740
0.005 J
0 1060
0 50 100 0 0 50 100

Iteration k& Iteration k
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Residual Function

Understand how the sequence of iterations behaves and
how close it gets to convergence. J
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Residual Function

Understand how the sequence of iterations behaves and
how close it gets to convergence. J

A standard recipe in optimization:

e Propose a residual function R : R” — R that measures the stationarity of the iterations.

e Estabilish the convergence of the sequence of {R(x*)}x>o.

lim R(x*) =0 <= OEGF( lim xk>

k—o0 k—o00
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Existing stationarity measures are not well-defined

All existing stationarity measure can be unified as
R3(x) == Dn(T;(x), x)

the relative change w.r.t Bregman divergence.
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Existing stationarity measures are not well-defined

All existing stationarity measure can be unified as
R3(x) == Dn(T;(x), x)

the relative change w.r.t Bregman divergence.

e R! is not well-defined on the boundary bd(dom(h)).

e The mapping x +— T}(x) involves the Bregman divergence function (y, x) — Dy(y, x),
which is only defined on dom(h) x int(dom(h)).

18



Extended Stationarity Measure

A simple fix: Only account for the interior coordinates, i.e.,

R (x) = Z D¢<T;(X)i7xi)7

i€Z(x)

=t . -
where T_(x) denotes the update rule that ensures the boundary coordinates remain fixed.
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e The residual function is continuous (V).

e The residual function equals to zeros if and only if x is a stationary point.
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where T_(x) denotes the update rule that ensures the boundary coordinates remain fixed.

lim R(x¥) =0 = OE@F( lim xk>
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e The residual function is continuous (V).
e The residual function equals to zeros if and only if x is a stationary point.
e If x is a stationary point, we have R (x) = 0 (V).

e =7
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Unsatisfactory Stationarity Measure and Spurious Stationary Points

Proposition (Characterization of spurious stationary points)
A point x € X is a spurious stationary point if and only if

—=t

R.(x) =0 but 0 ¢ OF(x).
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Unsatisfactory Stationarity Measure and Spurious Stationary Points

Proposition (Characterization of spurious stationary points)
A point x € X is a spurious stationary point if and only if

R.(x) =0 but 0 ¢ OF(x).

e We have demonstrated that spurious stationary points are ubiquitous.

e Can we provide a satisfactory stationarity measure? -> New Bregman-type algorithms...

He Chen*, Jiajin Li*, Anthony Man-Cho So*. Spurious Stationarity and Hardness Results for
Mirror Descent http://arxiv.org/abs/2404.08073
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Thank you for your listening!

Any questions?
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