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Main Results

1. Spurious stationary points inevitably exist when non-gradient
Lipschitz kernels are used for Bregman proximal-type algorithms.

2. (Algorithm-Dependent Hardness Results) Bregman proximal-type
algorithms are unable to escape from a spurious stationary point in
finite steps when the initial point is bad.
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What we’ll cover today?

1. Introduction and Problem Settings

2. Spurious Stationary Points and Examples

3. Algorithm-Dependent Hardness Results and their Implications

4. Unsatisfactory Stationary Measures and Convergence Behaviour Investigation

3



Mirror Descent (Non-Euclidean Gradient Descent)

min
x∈Rn

F (x) (P)

• Gradient Descent:

x+ = x − t · ∇F (x)

= argmin
y∈Rn

∇F (x)T (y − x) +
1
2t

∥y − x∥2.

• Mirror Descent:

x+ = argmin
y∈Rn

∇F (x)T (y − x) +
1
2t

Dh(y , x)︸ ︷︷ ︸
Bregman Divergence

.

Better to exploit the geometry of the problem at hand!
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Bregman Divergence

Definition
The Bregman divergence between two points x , y associated with a kernel function h : Ω → R
is defined as

Dh(x , y) := h(x)− h(y)−∇h(y)T (x − y),
where h is continuously differentiable and strictly convex on the convex set Ω.

• (✓) If h(x) = 1
2∥x∥

2, we have Dh(y , x) = 1
2∥y − x∥2. Then, mirror descent reduces to the

vanilla gradient descent.

• (✗) If h(x) =
∑n

i=1 xi log xi , Dh(y , x) is just KL divergence.

• (✗) Other non-gradient Lipschitz kernel functions · · ·
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Optimization Problems

min
x∈Rn

F (x) := f (x) + g(x). (P)

• dom(g) = X is a nonempty closed convex set.

• f : X → R is continuous differentiable on X (possibly nonconvex).

• g : X → R is convex and locally Lipschitz continuous, e.g.,

• Indicator function -> include the constrained optimization problem as a special case.
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Bregman Proximal-Type Algorithms

x+ = T t
γ(x) := argmin

y∈Rn

 γ(y ; x)︸ ︷︷ ︸
Surrogate Model

+g(y) +
1
t
Dh(y , x)

 (A)

• If γ(y ; x) = f (y), (A) reduces to Bregman proximal point methods [Chen and Teboulle, 1993].

• If γ(y ; x) = f (x) +∇f (x)T (y − x), (A) reduces to Bregman proximal (projected) gradient
descent [Bauschke et al., 2017],[Bauschke et al., 2019].

• If γ(y ; x) = f (x) +∇f (x)T (y − x) + 1
2 (y − x)T∇2f (x)(y − x), (A) has been recently

explored by [Doikov and Nesterov, 2023].
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Separable Kernel Functions

• h(x) =
∑n

i=1 φ(xi ), where φ : R → R is a univariate function.

• φ is continuously differentiable on int(dom(φ)), and |φ′(xk)| → +∞ as
xk → x ∈ bd(dom(φ)).

• φ is strictly convex.

1. Boltzmann–Shannon entropy kernel h(x) =
∑n

i=1 xi log(xi );

2. Fermi–Dirac entropy kernel h(x) =
∑n

i=1 xi log(xi ) + (1 − xi ) log(1 − xi );

3. Burg entropy kernel h(x) =
∑n

i=1 − log(xi );

4. Fractional power kernel h(x) =
∑n

i=1 pxi −
xp
i

1−p (0 < p < 1);

5. Hellinger entropy kernel h(x) =
∑n

i=1 −
√

1 − x2
i .
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1. Introduction and Problem Settings
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Spurious Stationarity

Definition
A point x ∈ X is defined as a spurious stationary point of problem (P) if there exists a vector
p ∈ ∂F (x) satisfying pI(x) = 0 but 0 /∈ ∂F (x).

• I(x) := {i ∈ [n] : xi ∈ int(dom(φ))}.

• Spurious stationary points exist only when the kernel is non-gradient Lipschitz.

• For a kernel h with gradient Lipschitz property, we have dom(φ) = R and I(x) = [n] hold
for all x ∈ X , thereby precluding the existence of spurious stationary points.

Only depends on the problem itself and the kernel function!
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Convex Example

Example (A Simple Linear Programming Problem)

Suppose that cl(dom(h)) = R2
+ and consider the following simple problem:

min
x1,x2

−x1

s.t. x1 + x2 = 1, x1, x2 ≥ 0.

The point (0,1) is identified as a spurious stationary point.

We find that 0 /∈ ∂F ((0, 1)) and p = (−1, 0) ∈ ∂F ((0, 1)) with pI((0,1)) = p2 = 0, i.e.,

∂F ((0, 1)) = {(−1, 0) + λ(−1, 0) + µ(1, 1) : λ ∈ R+, µ ∈ R}.
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Nonconvex Example

Example

Suppose that cl(dom(h)) = R2
+ and consider the following simple problem:

min
x1,x2

−x2
1 + x2

s.t. x1 + x2 = 1, x1, x2 ≥ 0.

The point (0,1) is identified as a spurious stationary point.

Proposition (Existence of Spurious Stationary Points)

Consider a convex optimization problem

min
x∈X

f (x)

s.t. Ax = b, x ≥ 0.

Suppose the constraint set is compact and and f is non-constant. If cl(dom(h)) = Rn
+, then

every maximal point x̃∗ ∈ argmaxx∈X f (x) is a spurious stationary point.
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Algorithm-dependent Hardness Result

Theorem
If there exists a spurious stationary point x̃∗ ∈ X for problem (P), then for every K ∈ N and
ϵ > 0, there exists an initial point x0 ∈ Bϵ(x̃∗) ∩ X , sufficiently close to the spurious
stationary point x̃∗, such that

xk ∈ Bϵ(x̃∗) for all k ∈ [K ].

[Corollary 1, Bauschke et al., 2017]. When f is convex, the sequence {xk}k∈N generated by
BPG satisfies

f (xk)− min
x∈X

f ≤

Extremely Large︷ ︸︸ ︷
Dh(x , x0)

t
· 1
k
,

where x ∈ argminx∈X f is the global minimizer, t is the step size, and x0 is an arbitrary initial
point.
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Visualization

Example (The Simple Linear Programming Problem)

For every K and ϵ > 0, we construct the initial point as

x0 =

(√
2ϵ
2

e−tK , 1 −
√

2ϵ
2

e−tK

)
.
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Residual Function

Understand how the sequence of iterations behaves and
how close it gets to convergence.

A standard recipe in optimization:

• Propose a residual function R : Rn → R+ that measures the stationarity of the iterations.

• Estabilish the convergence of the sequence of {R(xk)}k≥0.

lim
k→∞

R(xk) = 0 ⇐⇒
?

0 ∈ ∂F

(
lim

k→∞
xk

)
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Existing stationarity measures are not well-defined

All existing stationarity measure can be unified as

R t
γ(x) := Dh(T

t
γ(x), x)

the relative change w.r.t Bregman divergence.

• R t
γ is not well-defined on the boundary bd(dom(h)).

• The mapping x 7→ T t
γ(x) involves the Bregman divergence function (y , x) 7→ Dh(y , x),

which is only defined on dom(h)× int(dom(h)).
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Extended Stationarity Measure

A simple fix: Only account for the interior coordinates, i.e.,

R
t

γ(x) :=
∑

i∈I(x)

Dφ

(
T

t

γ(x)i , xi
)
,

where T
t

γ(x) denotes the update rule that ensures the boundary coordinates remain fixed.

lim
k→∞

R(xk) = 0 ⇐⇒
?

0 ∈ ∂F

(
lim

k→∞
xk

)

• The residual function is continuous (✓).

• The residual function equals to zeros if and only if x is a stationary point.

• If x is a stationary point, we have R
t
γ(x) = 0 (✓).

• ⇒ ?
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Unsatisfactory Stationarity Measure and Spurious Stationary Points

Proposition (Characterization of spurious stationary points)

A point x ∈ X is a spurious stationary point if and only if

R
t

γ(x) = 0 but 0 /∈ ∂F (x).

• We have demonstrated that spurious stationary points are ubiquitous.

• Can we provide a satisfactory stationarity measure? -> New Bregman-type algorithms...

He Chen*, Jiajin Li*, Anthony Man-Cho So*. Spurious Stationarity and Hardness Results for
Mirror Descent http://arxiv.org/abs/2404.08073
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Thank you for your listening!

Any questions?
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